
 

 

 S.NO: 22N1-UM                                           Course Code: MUA1 

A.D.M.COLLEGE FOR WOMEN, NAGAPATTINAM 

(AUTONOMOUS) 

B. Sc. (Chemistry/ Physics/ Geology) Degree Examination  

I Semester – November 2022 

AC I – MATHEMATICS I - 

 ALGEBRA, ANALYTICAL GEOMETRY OF 3D AND TRIGONOMETRY 

Time: 3 hours                 Maximum Marks: 75     

                                    Section –A                                           10X2=20 

Answer ALL the Questions: 

1. Find the 5th power of 11 using binomial theorem. 
2. Find the coefficient of nx in the series 
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3. Find the Characteristic Polynomial of the Matrix 
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4. State Calyley - Hamilton Theorem. 

5. Prove that the lines 
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coplanar.  
6. Find the equation of a sphere which passes through the point (1, -2, 3) 

and the circle 09,0 222 =−++= zyxz   . 

7. Prove that ).sin103sin55(sin
2
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=   

8. Find the value of 3sin correct to three decimal places. 
9. Show that xxx coshsinh22sinh = . 



 

10. Write the relational equations between hyperbolic and circular 
trigonometry functions of sine and cosine.  

                                                             Section –B                                          5X5=25 

Answer ALL the Questions: 

11. a) If ra be the coefficient of rx in the expansion of 
xee , then show that       

           
.........

!3
3

!2
2

!1
1

!
1











+++=

rrr

r r
a  Hence deduce that e5........

!3
3

!2
2

!1
1 333

=+++ .  

(or) 

       b) Obtain the expansion of 
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12.  a) Verify that A = 
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             hence find 4A . 

(or) 

         b) Using Cayley - Hamilton theorem find -1A where A = 
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13.  a) Find the shortest distance and equation of the line of shortest  

             distance between the lines 
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(or) 

        b) Find the equation of the sphere through the circle  
             0942;0632222 =−+−=+++++ zyxyxzyx   and the centre of the  

             sphere .05642222 =+−+−++ zyxzyx  



 

14.  a) Expand θθ 34 sincos  in a series of sines of multiples ofθ . 

(or) 

        b) Solve approximately 51.0
6
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15.  a) Prove that θseccosh =u if 
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(or) 

      b) Separate into real and imaginary parts of )(tan 1 iyx +− . 

 

                                                Section –C                                   3 X 10 = 30 

Answer any THREE Questions: 

16. If n is a positive integer and ...,......
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17. Find all the Eigen values and Eigenvectors of the matrix
















−−
−
−−

021
612
322

. 

18. Find the equation of the sphere through the points (0, 0, 0), (0, 1, -1),   
(-1, 2, 0) and (1, 2, 3). 
 

19. Expand θ7sin  in powers of θcos and θsin . Hence prove that 
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20. If ααφθ sincos)tan( ii +=+ , then prove that (i) 
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